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Structure of finite two-dimensional Yukawa lattices: Dust crystals

Hiroo Totsuji,* Chieko Totsuji, and Kenji Tsuruta
Department of Electrical and Electronic Engineering, Okayama University, Tsushimanaka 3-1-1, Okayama 700-8530, Japa
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Dust particles in plasmas are often confined near the boundary between the plasma bulk and the sheath
where the gravitation is balanced by electrostatic force. To keep dust particles from running away horizontally,
an electrostatic potential is usually applied to the electrode surrounding these dusty plasmas and, under appro-
priate conditions, we have finite two-dimensional lattices of dust particles. Modeling the interaction between
dust particles as the isotropic Yukawa interaction, structures of finite two-dimensional Yukawa systems at low
temperatures have been analyzed both by numerical simulations and variational methods. The effect of the
correlation energy between dust particles is shown to play an important role in the formation of the one-body
distribution in these systems.
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I. INTRODUCTION

Dusty plasmas have provided us with a unique sys
where the role of the Coulomb interaction in its static a
dynamic properties can be clearly observed experiment
One of typical phenomena is the formation of macrosco
plasma crystals, observed by the charge-coupled device c
era or even by naked eyes, where obviously the strong C
lomb coupling between dust particles is the essential ag
for such structures@1–4#. We have shown that the correlatio
energy between dust particles plays an important role in
termining the structure of finite Coulomb crystals@5–7#. In
this paper, we present another example indicating the im
tance of the Coulomb interaction in the structure of du
plasma crystals through the result of a numerical simula
and theoretical analysis.

Dust particles in plasmas usually appear near the horiz
tal boundary between the plasma bulk and the sheath w
the gravitational force is balanced by the levitation of t
static electric field in the sheath, and they are vertica
trapped. Under appropriate conditions, dust particles are
confined horizontally and one can have finite quasi-tw
dimensional dusty plasma crystals@8,9#.

Regarding dusty plasmas as a system of Yukawa parti
confined in a vertical trap, we have shown that its struct
changes discretely as a result of the competition betw
vertical confinement~around the equilibrium position! and
mutual repulsion@5–7#. The strength of vertical confinemen
is determined by the charge density in the sheath and, w
it is strong enough, we may realize a two-dimensional s
tem of dust particles in a horizontal plane@5#. In experi-
ments, negatively biased electrodes are usually placed in
der to keep dust particles from running away horizonta
We thus have a planar system of dust particles, which
confined also in the lateral directions by the potential of el
trodes.

The behavior of finite two-dimensional crystals has
tracted much interest as an object of statistical physics
dusty plasma crystals have been analyzed from such v
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point @10–12#. The effect of the Coulomb interaction in the
static structures, however, does not seem to have been
discussed. In what follows, we analyze the structure of tw
dimensional dust crystals taking the correlation energy
tween dust particles into account@13#.

II. POTENTIAL STRUCTURE

We take thez axis in the direction opposite to the grav
tation and express the coordinates asr5(R,z). We adopt the
ion matrix sheath model@14# with the sheath in the domain
z,0. We assume that the density of charges in the she
~not including those of dust particles! is nearly constant a
least in the domain where dust crystals are formed and
note the density byensh , e being the elementary charge. I
the domainz,0, the combination of the gravitational poten
tial mgz and the electrostatic potential 2pqenshz

2 forms a
potential well for a dust particle of massm and charge2q
,0 @7#

fext
(1)~z,0!5mgz12pqenshz

25fext~z0!1
k

2
~z2z0!2,

~2.1!

where

k54pqensh ~2.2!

and

z052
mg

4pqensh
52

g

4pensh

m

q
,0. ~2.3!

Under only the one-dimensional confinement in thez di-
rection described above, dust particles will expand horiz
tally and we cannot maintain their surface density: The
duction of the surface density lowers the total energy of
system. In real experiments, such an expansion is limited
some mechanism coming from either the intentionally plac
limiting electrode or the size of the experimental apparat
In numerical simulations, the surface density is forced
remain constant usually by the periodic boundary conditio
@5–7#. Our previous analyses of dusty plasmas in the o
©2001 The American Physical Society02-1
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dimensional confinement have implicitly focused on their b
havior in the central part of the system in real experimen
where the system can be regarded as uniform in horizo
directions@5–7#.

Let us assume that we place a uniformly charged r
electrode of radiusR0 in the planez5z0. Then its charge
density may be given by

r ring~r !5
Q

2pR0
d~R2R0!d~z2z0!, ~2.4!

whereQ is the total charge on the electrode. The Coulo
potential due to this ring electrode is calculated as

f ring~r !5
Q

~2RR0!1/2t
FS 1

4
,
3

4
,1;t22D . ~2.5!

Here F(a,b,g;x) is the Gauss’s hypergeometric functio
and t5@R0

21R21(z2z0)2#/2RR0. When R21(z2z0)2

!R0
2, f ring(r ) is approximately given by

f ring~r !;
Q

R0
F11

1

4

R222~z2z0!2

R0
2 G . ~2.6!

When we take the effect of screening into account, Eq.~2.5!
becomes

f ring~r !5E dr 8
exp~2ur2r 8u/l!

ur2r 8u
r ring~r 8!. ~2.7!

Herel is the screening length. WhenR21(z2z0)2!R0
2, we

have

f ring~r !;
Q

R0
exp~2R0 /l!F11

1

4 S 11
R0

l
1

R0
2

l2DR2

R0
2

2
1

2 S 11
R0

l D ~z2z0!2

R0
2 G . ~2.8!

Since we may express the horizontal limiting mechani
by some electrostatic potential due to external chargesfext

(2) ,
its effect may be given generally by

fext
(2)~r !;fext

(2)~0,z0!1
K

2
R22K8~z2z0!2. ~2.9!

The potential of the external chargesfext
(2) alone does not

have the minimum around (R,z)5(0,z0): When l5`, K
5K8 and Dfext

(2)(r )50. Combined with the potentia
fext

(1)(z,0) in the sheath, however, we have a potential str
ture

fext~r !5fext
(1)~r !1fext

(2)~r !;fext~0,z0!

1
K

2
R21

k8

2
~z2z0!2, ~2.10!

where dust particles are confined both vertically a
06640
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horizontally, if

k85k22K8.0. ~2.11!

III. PARAMETERS

We assume that the interaction between dust particle
given by the repulsive Yukawa interaction

q2

r
expS 2

r

l D . ~3.1!

In what follows, we mainly consider the case where d
particles are on a horizontal plane and we may neglect
effect of the ion flow in interactions between particles. T
formation of ion clouds below dust particles may lead
additional dipole nature of interactions. Their effect on ho
zontal structures, however, is much smaller than the one
vertical structures, such as, alignment of dust particles.

At low temperatures, the structure of this dusty plas
confined by the potentialfext(r ) is determined by the pa
rametersk8, K, and the total number of particles. In th
paper, we assume that

k8;k@K.0, ~3.2!

and the system takes a form of thin pancake. The vert
thickness is determined by the competition between the
tical confinement and the mutual repulsion@5,7#. Since the
mutual distance of dust particles may be represented by
surface densityNS as a51/(pNS)1/2, such a competition is
characterized by the parameterh defined, as in our previous
analyses@5,7#, by

h5
p1/2

2

ka2/2

q2/a
;S e

qD S nsh

NS
3/2D . ~3.3!

We have shown that the system undergoes structural tra
tions according to the value ofh and, whenh is sufficiently
large, the system reduces to a single layer@5#.

In the following, we consider the case where the du
plasma collapses into a single layer and shift thez axis so
that z050. The total potential energy in our system com
posed ofN particles

(
i . j

N
q2

Ri j
expS 2

Ri j

l D1
1

2
K(

i

N

Ri
2 ~3.4!

is rewritten into the form

q2

l F(
i . j

N
1

Ri j8
exp~2Ri j8 !1

1

2a (
i

N

~Ri8!2G , ~3.5!

where

a5
q2

Kl3 . ~3.6!
2-2
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Here quantities with the prime are measured by the scree
lengthl; Ri j8 5Ri j /l5uRi2Rj u/l, andRi85Ri /l. Equation
~3.5! indicates that our system at low temperatures is ch
acterized by the parametersa and the total number of par
ticlesN. Whena is large, the lateral confinement is weak
the screening is strong; the system is expected to behav
the one with short-ranged interactions. Whena is small, the
lateral confinement is strong or the screening is weak;
system is expected to behave as finite Coulombic one.

Since the parametera may seem to lack the direct corre
spondence to experiments, we here present some num
based on the results that will be given in Sec. V. The m
distance between particlesa is roughly given by

a

l
5S 8a

N D 1/4

. ~3.7!

When N5104, we havea/l51.68 anda/l50.168 for a
5104 anda51, respectively. These numbers are within t
range of parameters of usual dusty plasma experiments.

IV. STRUCTURES AT LOW TEMPERATURES:
MOLECULAR DYNAMICS SIMULATION

We have performed molecular dynamics simulations
our confined two-dimensional Yukawa system. The force
each particle and the total potential have been evaluated
by the direct computation and by the fast multipole meth
~the tree code! @15#. The temperature of the system has be
kept constant by the Nose´-Hoover method@16#. Slowly de-
creasing the temperature, we have obtained the structur
low temperatures.

When the number of particles is small, we have the rin
type configuration or the star configuration according to
numberN as shown in Fig. 1. The ground state is given
the ring-type configurations forN<5 or by the star configu-
ration forN>6, irrespective ofthe value of the parametera.

With the increase of the number of particles, the cen
part of the system is organized into the triangular latti
while the ring-type configurations remain on the periphery
regular lattice cannot be extended to the whole system
the existence of lattice defects is inevitable. Some exam
are shown in Fig. 2. Since we have many local minima of
total energy, it becomes very difficult to find computationa
the global minimum when the number of particles is of t
order of or larger than 100.

The density of particles is expressed asr(R)d(z) and the
total number of particlesN is related tor(R) by

FIG. 1. Structures of the finite two-dimensional Yukawa du
plasma crystal in the ground state for a small number of partic
System size changes witha while the structure remains the sam
06640
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E dRr~R!5N. ~4.1!

In the case of relatively large number of particles on a pla
we may describe the distribution of particles by the isotro
surface densityr(R)5r(R), which is not so sensitive to the
specific local minimum the system is located. Some res
are given in Fig. 3. The maximum radius of distributionRm
is shown in Fig. 4.

When fitted to parabolic function of radius, these dist
bution functions are approximately expressed by a pa
metrized formula

l2r~R!5
c1

a1/2
2

c2

a S R

l D 2

, ~4.2!

where, for example,

s.

FIG. 2. Examples of structures of the finite two-dimension
Yukawa dusty plasma crystal at low temperatures for a large
intermediate number of particles. Coordinates are normalized by
screening length.~a! N5104, a5104 and ~b! N5103, a5102.
2-3
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FIG. 3. Radial distribution in finite two-dimensional Yukaw
dusty plasma crystals forN5104. Thick solid lines and broken lines
are theoretical results with@theory~2!# and without cohesive energ
@theory~1!#, respectively.~a! a5104, ~b! 102, ~c! 1.0, ~d! 1022, and
~e! 1024.
06640
c1;1.5N1/3, c2;0.11, ~4.3!

for 500<N<104. Here the power 1/3 is adoptedad hocfrom
the inverse of integers. In the light of the results in Sec.
one may expect 1/2 instead of 1/3 as the power ofN. In that
case, we have a formula of the form~4.2! with

c1;0.35N1/2, c2;0.11, ~4.4!

for 500<N<104. The fitting with Eq.~4.3! is slightly better
than that with Eq.~4.4! for this range ofN. The error of this
simple interpolation~4.2!, however, amounts at most t
20–30 % and is not so sensitive to the power ofN. Theoret-
ical results with much better accuracy at least fora.1 will
be given in Sec. V.

V. STRUCTURES AT LOW TEMPERATURES:
VARIATIONAL ANALYSIS

When the Yukawa particles are distributed uniformly on
planez50 with the densityr(R)d(z)5r0d(z), the potential
at (R,z), f(R,z), due to these particles is given by

f~R,z!5E dr 8
2q

ur2r 8u
exp~2ur2r 8u/l!r~R8!d~z8!

52p~2q!lr0 exp~2uzu/l!. ~5.1!

Since the interaction energy is written as

1

2E drf~R,z!~2q!r~R!d~z!5E dRpq2lr0
2 , ~5.2!

the interaction energy per unit area is given bypq2lr0
2.

Let us assume that the distribution of Yukawa particles
our finite system does not depend on the radial distancR
and is given by

r~R!5r0u~Rm2R!, ~5.3!

FIG. 4. Radius of the two-dimensional Yukawa dusty plas
crystal for a large number of particles. Symbols are results of sim
lations. Solid and broken lines are theoretical results with@theory
~2!# and without cohesive energy@theory ~1!#, respectively.
2-4
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whereRm is the radius of distribution andu is the unit step
function. When the edge effect can be neglected, the inte
tion energy between particlesUint may be estimated as

Uint5E
R,Rm

dRpq2lr0
25p2q2lr0

2Rm
2 . ~5.4!

The total potential energy of the system is then given by

Uint1Uext , ~5.5!

whereUext is the total external potential

Uext5E
R,Rm

dR
1

2
KR2r05

1

4
pKr0Rm

4 . ~5.6!

Minimizing the total potential energy withN kept fixed, we
have

r0l25
N1/2

2pa1/2
~5.7!

and

Rm5R0 , ~5.8!

where

S R0

l D 4

54aN. ~5.9!

The above results are to be compared with those obta
by simulations shown in Fig. 3. Though the order of mag
tude is estimated correctly, it is clear that the assumption
constant density is too simple to reproduce the results
simulations.

Let us now assume that the surface density depends o
radial position as

r~R!u~Rm2R! ~5.10!

and let us adopt the local density approximation. The in
action energy may then be expressed as

Uint5E
R,Rm

dRpq2lr~R!2. ~5.11!

The external potential is given by

Uext5E
R,Rm

dR
1

2
KR2r~R!. ~5.12!

Let us find r(R) and Rm that minimize the value of
Uint1Uext under the condition~4.1! ~see the Appendix!. The
variation with respect tor(R) leads to

E
R,Rm

dRF2pq2lr~R!1
1

2
KR2Gdr~R!50 ~5.13!

and
06640
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R,Rm

dRdr~R!50. ~5.14!

Denoting the Lagrange’s multiplier bym, we have

2pq2lr~R!5m2
1

2
KR2, ~5.15!

and the value ofm is determined by Eq.~4.1!. Taking the
variation also with respect toRm , we have finally

m5
1

2
KRm

2 , ~5.16!

l2r~R!5
1

4paF S R1

l D 2

2S R

l D 2G , ~5.17!

and the maximum radiusRm5R1521/4R0 or

S R1

l D 4

52S R0

l D 4

58aN. ~5.18!

The results~5.17! and~5.18! are plotted in Figs. 3 and 4
We observe that, whena@1 or a!1, they largely underes
timate the density and, therefore, overestimate the maxim
radius. This indicates that the inclusion of the effect of
dering between particles may be necessary in order to fill
gap between theoretical estimation and simulations: The
mation of order reduces the total interaction energy due
negative cohesive~or correlation! energy and, therefore, th
system can have larger density or smaller maximum rad

The cohesive energy of the two-dimensional Yukawa s
tem at low temperatures may be approximately given by t
of the two-dimensional Yukawa lattice. The value~per unit
area! of the latter with the uniform surface densityr0 is
expressed by a functionecoh(1/lr0

1/2) as @6#

q2r0
3/2ecohS 1

lr0
1/2D . ~5.19!

Again within the local density approximation, the total e
ergy is given by

E
R,Rm

dRFpq2lr2~R!1
1

2
KR2r~R!

1q2r~R!3/2ecoh~1/lr~R!1/2!G ~5.20!

and we denote the maximum radius in this approximation
R2. The functionecoh(1/lr0

1/2) is approximately given by

ecohS 1

lr0
1/2D 52a1

b

lr0
1/2

, ~5.21!

where, for example, in the range ofr(R) affected most sig-
nificantly by ecoh ~see Fig. 3!,
2-5
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a/p1/2;1.0, b/p1/2;0.3p21/2

for 0.3p1/2,
1

lr0
1/2

,1.7p1/2. ~5.22!

When we take the cohesive energy between particles
account based on the local approximation, we thus have

E
R,Rm

dRF2pq2lr~R!1
1

2
KR2

2a
3

2
q2r~R!1/21

bq2

l Gdr~R!

50 ~5.23!

and Eq.~5.14!. The density is determined by

l2r~R!2
3a

4p
@l2r~R!#1/25m2

b

2p
2

1

4pa S R

l D 2

~5.24!

and the Lagrange’s multiplierm and the radiusRm5R2 is
determined by taking Eq.~4.1! into account~see the Appen-
dix!. The final results are

l2r~R!5
1

4paF S R2

l D 2

2S R

l D 2G1
3a

4p F 1

4paF S R2

l D 2

2S R

l D 2G
1S a

8p D 2G1/2

1
5a2

32p2 , ~5.25!

whereR2(,R1) is determined by

8aN5S R2

l D 4

1
2a

p1/2
a1/2H F S R2

l D 2

1
a2

16p
aG3/2

2S a2

16p
a D 3/2J

1
5a2

4p
aS R2

l D 2

. ~5.26!

The results are plotted in Figs. 3 and 4. We observe
when the parametera satisfies the condition

a.1, ~5.27!

results of numerical simulations for both the distributi
function and the maximum radius are reproduced by the
pressions~5.25! and ~5.26! to a very good accuracy.

In the case where

a!1, ~5.28!

the maximum radius becomes comparable with or sma
than the screening length. In other words, the range of
potential from a particle in the systeml becomes compa
rable with or larger than the system radius. The local den
approximation may not be applicable in this domain and t
may be the main reason for the deviation from the results
numerical experiments.
06640
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VI. CONCLUSION

The two-dimensional Yukawa system confined by the~lat-
eral! parabolic potential at low temperatures has been a
lyzed by numerical simulations and variational calculatio
When the number of particles is large, numerical results
the one-body distribution are expressed by a simple inter
lation formula. It has been shown that, when the screen
length is larger than the radial system size, the one-b
distribution at low temperatures obtained by numerical sim
lations is reproduced by minimizing the total energy of t
system within the local density approximation, where t
inclusion of the cohesive~correlation! energy is of an essen
tial importance.
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APPENDIX

We minimize the integral

E
R,Rm

dRG@r#~R! ~A1!

under the condition

E
R,Rm

dRr5N, ~A2!

where the integrand ofUint1Uext is expressed asG@r#(R).
The variation with respect tor with fixed Rm gives

dG@r#

dr
5m, ~A3!

where the Lagrange’s multiplierm is determined by Eq.~A2!
asm5m(Rm). Substituting the result into Eq.~A1!, we mini-
mize Eq.~A1! further with respect toRm by taking the varia-
tion as

2pRmG@r#~Rm!1E
R,Rm

dR
dG@r#

dr

]r

]m

dm

dRm

52pRmG@r#~Rm!1mE
R,Rm

dR
]r

]m

dm

dRm
50. ~A4!

Since the variation of Eq.~A2! with respect toRm gives

2pRmr~Rm!1E
R,Rm

dR
]r

]m

dm

dRm
50, ~A5!

Eq. ~A4! is rewritten into
2-6
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2pRm$G@r#~Rm!2mr~Rm!%

52pRmH G@r#~Rm!2
dG@r#

dr
r~Rm!J 50.

~A6!
r-

.,

ev

s

M

06640
In the case of Eq.~5.11! and Eq.~5.12!, Eq. ~A6! reduces
r2(Rm)50 and we have Eqs.~5.16!–~5.18!. In the case of
Eqs. ~5.20!, ~5.21!, and ~5.12!, we have Eqs.~5.25! and
~5.26!. @Note that, in the latter case,r(R) has a discontinuity
at R5Rm andl2r(Rm)5l2r(Rm20)5(a/2p)2.0.#
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