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Structure of finite two-dimensional Yukawa lattices: Dust crystals
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Dust particles in plasmas are often confined near the boundary between the plasma bulk and the sheath
where the gravitation is balanced by electrostatic force. To keep dust particles from running away horizontally,
an electrostatic potential is usually applied to the electrode surrounding these dusty plasmas and, under appro-
priate conditions, we have finite two-dimensional lattices of dust particles. Modeling the interaction between
dust particles as the isotropic Yukawa interaction, structures of finite two-dimensional Yukawa systems at low
temperatures have been analyzed both by numerical simulations and variational methods. The effect of the
correlation energy between dust particles is shown to play an important role in the formation of the one-body
distribution in these systems.
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I. INTRODUCTION point[10-12. The effect of the Coulomb interaction in their
static structures, however, does not seem to have been fully
Dusty plasmas have provided us with a unique systengdliscussed. In what follows, we analyze the structure of two-

where the role of the Coulomb interaction in its static anddimensional dust crystals taking the correlation energy be-

dynamic properties can be clearly observed experimentallyjween dust particles into accourit3].

One of typical phenomena is the formation of macroscopic

plasma crystals, observed by the charge-coupled device cam- Il. POTENTIAL STRUCTURE

era or even by naked eyes, where obviously the strong Cou- . L . .

lomb coupling between dust particles is the essential agent Ve take thez axis in the direction opposite to the gravi-

for such structuregl—4]. We have shown that the correlation ftatlon and express the coordinates agR,z). We adopt the

energy between dust particles plays an important role in dd®" matrix sheath modglL4] with the sheath in the domain
termining the structure of finite Coulomb crystd-7]. In ~ 2<0. We assume that the density of charges in the sheath

this paper, we present another example indicating the impof1©t including those of dust particless nearly constant at

tance of the Coulomb interaction in the structure of dusty/€ast in the domain where dust crystals are formed and de-

plasma crystals through the result of a numerical simulatioiOt€ the density bgng;,, € being the elementary charge. In

and theoretical analysis. t_he domairz<0, the combmgnon of the grawtatzlonal poten-
Dust particles in plasmas usually appear near the horizorfl2l Mgz and the electrostatic potentialnzien,,z” forms a

tal boundary between the plasma bulk and the sheath wheR9tential well for a dust particle of mass and charge-q

the gravitational force is balanced by the levitation of the<0 [7]

static electric field in the sheath, and they are vertically K

trapped. Under appropriate conditions, dust particles are also dB(z<0)=mgz+ 2mqenz?= dexi(Z0) + = (2— 20)?,

confined horizontally and one can have finite quasi-two- 2

dimensional dusty plasma crystai 9]. 2.9
Regarding dusty plasmas as a system of Yukawa partide\ﬁhere

confined in a vertical trap, we have shown that its structure

changes discretely as a result of the competition between k=4mqen, (2.2)

vertical confinementaround the equilibrium positionand

mutual repulsio5-7]. The strength of vertical confinement and

is determined by the charge density in the sheath and, when

it is strong enough, we may realize a two-dimensional sys- mg g

m
tem of dust particles in a horizontal plafB]. In experi- 2=~ 47qurkh:_ dmeng, a<0. (2.3

ments, negatively biased electrodes are usually placed in or-

der to keep dust particles from running away horizontally. Under only the one-dimensional confinement in #hai-
We thus have a planar system of dust particles, which isection described above, dust particles will expand horizon-
confined also in the lateral directions by the potential of electally and we cannot maintain their surface density: The re-
trodes. duction of the surface density lowers the total energy of the
The behavior of finite two-dimensional crystals has at-system. In real experiments, such an expansion is limited by
tracted much interest as an object of statistical physics ansome mechanism coming from either the intentionally placed
dusty plasma crystals have been analyzed from such viewimiting electrode or the size of the experimental apparatus.
In numerical simulations, the surface density is forced to
remain constant usually by the periodic boundary conditions
*Email address: totsuji@elec.okayama-u.ac.jp [5—7]. Our previous analyses of dusty plasmas in the one-
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dimensional confinement have implicitly focused on their be-horizontally, if

havior in the central part of the system in real experiments,

where the system can be regarded as uniform in horizontal k'=k—2K'>0. (211
directions[5-7].

Let us assume that we place a uniformly charged ring
electrode of radius}, in the planez=z,. Then its charge
density may be given by We assume that the interaction between dust particles is

given by the repulsive Yukawa interaction

IIl. PARAMETERS

—eX .
RS I

pring(r):%Roé(R_ Ro) 8(z—2z), (2.9 q2 F{ r)
r

(3.1
whereQ is the total charge on the electrode. The Coulomb

potential due to this ring electrode is calculated as In what follows, we mainly consider the case where dust
particles are on a horizontal plane and we may neglect the
_ Q F(— 3 142 effect of the ion flow in interactions between particles. The
(2RR)V% \474"7 formation of ion clouds below dust particles may lead to
additional dipole nature of interactions. Their effect on hori-
Here F(a,B,y;X) is the Gauss’s hypergeometric function zontal structures, however, is much smaller than the one on
and t=[R§+ R?+(z—20)%]/2RR,. When R?+(z—z,)?  Vertical structures, such as, alignment of du_st particles.
<R}, ¢ring(r) is approximately given by At low temperatures, the structure of this dusty plasma
confined by the potentiad.,(r) is determined by the pa-

¢ring(r) . (25)

Q 1 R?—2(z—2)? rametersk’, K, and the total number of particles. In this
Gring(r)~ Ro 1+7 R (2.6 paper, we assume that
When we take the effect of screening into account, @) k' ~k>K>0, 3.2

becomes ) _
and the system takes a form of thin pancake. The vertical
exp(—|r—r'|/\) thickness_ is determined by the competitipn betw_een the ver-

¢,mg(r)=J dr’ , pring(r’). (2.7  tical confinement and the mutual repulsit®7]. Since the

Ir—=r’| mutual distance of dust particles may be represented by the

_ _ . surface densitfNg asa=1/(7Ng)*? such a competition is
Here\ is the screening length. Wheif+(z—2,)*<Rg, We  characterized by the parameterdefined, as in our previous
have analyseg5,7], by

Ro RS) R?

12 1, 52
1+ —+ =|= e ka2
RS n=

2 ¢Ya

e

q

1+l
4

qbring(r)NRgoexq_RO/)\) N F

Nsh
N—,g,lz . (3.3

(2.8)  We have shown that the system undergoes structural transi-
tions according to the value af and, wheny is sufficiently

Since we may express the horizontal limiting mechanism@rge; the system reduces to a single la\&r

by some electrostatic potential due to external chagbgs, In the following, we consider the case where the dusty
its effect may be given generally by plasma collapses into a single layer and shift thexis so

that z,=0. The total potential energy in our system com-
posed ofN particles

1 Ro| (z—20)?
‘5(”?)?@*'

K
dE(r)~ p2(0,20) + §R2— K'(z—z)%. (2.9

N 2 N

> q—exp(—& +}KE R? (3.9
The potential of the external charges?) alone does not =i Ry N 29 '
have the minimum aroundR(z)=(0,z5): When A=, K

=K’ and A¢{Z(r)=0. Combined with the potential is rewritten into the form

#{(z<0) in the sheath, however, we have a potential struc-

ture o 1 o1 N ,

) i N |2>l —OE-R)+ 5o X (RD?, (39

bexd(1) = BEUN) + HEAT) ~ Bexi(0.20) L
K k’ where
+ =R+ —(z—2p)%, (2.10
2 2 5
a= (3.6

where dust particles are confined both vertically and KA\3® '
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' N=10*, a=10"

FIG. 1. Structures of the finite two-dimensional Yukawa dusty
plasma crystal in the ground state for a small number of particles.
System size changes with while the structure remains the same.

40 + -

Here quantities with the prime are measured by the screenin
length); R =R;;/A=|Ri—Ry|/\, andR/ =R;/\. Equation
(3.5 indicates that our system at low temperatures is char- -0
acterized by the parametessand the total number of par-
ticlesN. Whene is large, the lateral confinement is weak or
the screening is strong; the system is expected to behave ¢ 80
the one with short-ranged interactions. Wheis small, the
lateral confinement is strong or the screening is weak; the
system is expected to behave as finite Coulombic one.
Since the parameter may seem to lack the direct corre-
spondence to experiments, we here present some numbe

1 1
-120 -80 -40 0 40 80

based on the results that will be given in Sec. V. The mean 30 T . . .
distance between particlesis roughly given by N=10°, =10 (b)
200 : 8
a 8a 1/4
X N) 59 10} 1
When N=10*, we havea/\=1.68 anda/\x=0.168 for « or 1
=10* anda=1, respectively. These numbers are within the
range of parameters of usual dusty plasma experiments. 10 7
IV. STRUCTURES AT LOW TEMPERATURES: 200 HOORN i
MOLECULAR DYNAMICS SIMULATION ‘ . . ‘ |
-30
30 200 -10 0 10 20 30

We have performed molecular dynamics simulations on
our confined two-dimensional Yukawa system. The force on g1 2 Examples of structures of the finite two-dimensional

each particle and the total potential have been evaluated botQkawa dusty plasma crystal at low temperatures for a large and
by the direct computation and by the fast multipole methodntermediate number of particles. Coordinates are normalized by the
(the tree codg[15]. The temperature of the system has beenscreening lengthi@) N=10%, a=10* and (b) N=10®, a=1C%.
kept constant by the Noddoover method 16]. Slowly de-
creasing the temperature, we have obtained the structures at
low temperatures.

When the number of particles is small, we have the ring-

type configuration or the star configuration according to thq, the case of relatively large number of particles on a plane,

numt_)erN as ShOV.V” in I_:ig. 1. The ground state is giv_en bywe may describe the distribution of particles by the isotropic
the ring-type configurations fdd<5 or by the star configu- ¢ 7o density(R) = p(R), which is not so sensitive to the

ratior_l r1‘\orhN>_6, irrespet;ti\r/]e ofthe t\)/aluefof the Ipararrr:etar. pecific local minimum the system is located. Some results
With the increase of the number of particles, the centrag, o given in Fig. 3. The maximum radius of distributiBp,

part of the system is organized into the triangular Iattlce,iS shown in Fig. 4

while the ring-type configurations remain on the periphery: A"~ \ypen fitted to parabolic function of radius, these distri-

regular lattice cannpt be extendeq tolthe whole system angution functions are approximately expressed by a para-
the existence of lattice defects is inevitable. Some examples,atrized formula

are shown in Fig. 2. Since we have many local minima of the

f dRp(R)=N. (4.1)

total energy, it becomes very difficult to find computationally R\ 2
the global minimum when the number of particles is of the A2p(R _ G CZ() , 4.2
order of or larger than 100. at?  alh

The density of particles is expressedd®) 6(z) and the

total number of particledl is related top(R) by where, for example,
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FIG. 4. Radius of the two-dimensional Yukawa dusty plasma
crystal for a large number of particles. Symbols are results of simu-
lations. Solid and broken lines are theoretical results \nitleory
(2)] and without cohesive enerdgyheory(1)], respectively.

simulation St
theory(2) o, -
'''' theory(1) .

30 T T T T
(¢) N=10", 0=1.0

c,~1.5NY  ¢,~0.11, 4.3

25

] for 500<N=<10". Here the power 1/3 is adopted hocfrom

i the inverse of integers. In the light of the results in Sec. V,
one may expect 1/2 instead of 1/3 as the poweK.ofn that
case, we have a formula of the fori#.2) with

20

15

PRAN

10

c;~0.3NY2  ¢,~0.11, (4.4

simulation
sk theory(2)

----- theory(1)

for 500<N=10*. The fitting with Eq.(4.3) is slightly better
than that with Eq(4.4) for this range ofN. The error of this
simple interpolation(4.2), however, amounts at most to
20-30% and is not so sensitive to the poweNofTheoret-

T
(d) N=10", a=107

— simulation
theory(2)
""" theory(1)

2500
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g
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T
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FIG. 3. Radial distribution in finite two-dimensional Yukawa

0.5

R/A

T ical results with much better accuracy at leastdor 1 will

be given in Sec. V.

V. STRUCTURES AT LOW TEMPERATURES:
VARIATIONAL ANALYSIS

When the Yukawa particles are distributed uniformly on a
planez= 0 with the densityp(R) 8(z) = py5(2), the potential
at (R,2), ¢(R,z), due to these particles is given by

—q
=
=2m(—q)\poexp(— |zI/\).

¢(R,z)=fdr’ exp —|r—r'|/\)p(R")8(Z")

(5.9

Since the interaction energy is written as

1
5 f dr$(R,2)(—q)p(R) 8(2) = f dRmg\p2, (5.2

the interaction energy per unit area is givenﬂagz)\pé.
Let us assume that the distribution of Yukawa particles in

dusty plasma crystals fod=10%. Thick solid lines and broken lines  our finite system does not depend on the radial distdce
are theoretical results wifltheory(2)] and without cohesive energy and is given by

[theory(1)], respectively(a) a=10% (b) 10, (c) 1.0,(d) 10"2, and

(e) 1074,

P(R)=pof(Rn—R), (5.3
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whereR,, is the radius of distribution and is the unit step

function. When the edge effect can be neglected, the interac-

tion energy between particlés;,; may be estimated as
Uim=f dR7q2\pi=m29°\pR%,.  (5.4)
R<Rp

The total potential energy of the system is then given by

Uint+ Uexta (55)
whereU,,; is the total external potential
1 2 1 4
Uex= dR;KRpo= - mKpgR},. (5.6
R<Rp, 2 4

Minimizing the total potential energy witN kept fixed, we
have

Nl/2
pO)\ZZZﬂ'al/Z 57
and
Rm=Ro, (5.8
where
Ro|*
T) =4aN. (5.9

The above results are to be compared with those obtain
by simulations shown in Fig. 3. Though the order of magni-
tude is estimated correctly, it is clear that the assumption o
constant density is too simple to reproduce the results o

simulations.

Let us now assume that the surface density depends on i

radial position as

p(R)O(Ry—R) (5.10

and let us adopt the local density approximation. The inter-

action energy may then be expressed as

Umt:f dR7g°\p(R)?. (5.19)
R<Rp
The external potential is given by
1
uext:f dR=KR?p(R). (5.12
R<R, 2

Let us find p(R) and R, that minimize the value of
Uint + Uey under the conditior4.1) (see the Appendjx The
variation with respect t@(R) leads to

[ e
R<Rp

279°\p(R) + ;KRZ}&)(R):o (5.13

and

PHYSICAL REVIEW E64 066402

J dRé&p(R)=0. (5.19
R<Rn,
Denoting the Lagrange’s multiplier by, we have
1
279’ p(R)=u— =KR?, (5.15

2

and the value ofu is determined by Eq(4.1). Taking the
variation also with respect tB,,, we have finally

1 2
u=5KR3, (5.16
\2p(R)=—| [ *(R)? 5.1
p( )—m ~ AL (5.19
and the maximum radiuR,,= R, = 2R, or
(Rl 4—2(R° 4—8 N 5.1
T = T —OwIN. ( &

The resultg5.17) and(5.18 are plotted in Figs. 3 and 4.
We observe that, whea>1 or a<1, they largely underes-
timate the density and, therefore, overestimate the maximum
radius. This indicates that the inclusion of the effect of or-
dering between particles may be necessary in order to fill the
gap between theoretical estimation and simulations: The for-
mation of order reduces the total interaction energy due to

e%egative cohesivéor correlation energy and, therefore, the
system can have larger density or smaller maximum radius.
The cohesive energy of the two-dimensional Yukawa sys-
m at low temperatures may be approximately given by that
of the two-dimensional Yukawa lattice. The valgger unit

ea of the latter with the uniform surface densipy is
expressed by a functiog,,,(1/\ pg) as[6]

1
2 32
a°po ecoh( W)-

(5.19

Again within the local density approximation, the total en-
ergy is given by

1
f dR[ 79\ p%(R) + =KR?p(R)
R<Rp, 2

+02p(R)¥%ec0n( 1N p(R)Y?) (5.20

and we denote the maximum radius in this approximation by
R,. The functiones,(1/\p3?) is approximately given by

1 b
TV v

(5.21

where, for example, in the range pfR) affected most sig-
nificantly by e, (see Fig. 3,
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al w2~ 1.0, b/ 72~ 3712 VI. CONCLUSION

The two-dimensional Yukawa system confined by ({la¢

<1.77Y2 (5.22  era) parabolic potential at low temperatures has been ana-
Ap(l)’z lyzed by numerical simulations and variational calculations.
When the number of particles is large, numerical results for

When we take the cohesive energy between particles intthe one-body distribution are expressed by a simple interpo-
account based on the local approximation, we thus have I|ation formula. It has been shown that, when the screening
length is larger than the radial system size, the one-body

j drR distribution at low temperatures obtained by numerical simu-

R<Rn, lations is reproduced by minimizing the total energy of the

3 be? system within the local density approximation, where the

—agqﬁmRﬂ“+7§J&xR>

=0 (5.23

for 0.37%<

1
27Tq2)\p(R)+§KR2

inclusion of the cohesivécorrelation energy is of an essen-
tial importance.

ACKNOWLEDGMENTS

and Eq.(5.14. The density is determined by The authors thank Ken'ichi Kamon and Tokunari Kish-
3 b ) imoto for their numerical work in the early stage of this
A2p(R) — _a[)\zp(R)]l/z_ _ L(R) mvestlg_atlon. This V\{ork_ has been partly support_ec_i by the
4 Grants-in-Aid for Scientific Researches of the Ministry of
(5.29 Education, Science, Sports, and Culture of Japan, Grant Nos.

08458109 and 11480110.

and the Lagrange’s multiplier and the radiufR,,=R, is
d_etermlneq by taking Ed4.1) into account(see the Appen- APPENDIX
dix). The final results are

We minimize the integral

) 1 [[R)\? [R\?] 3al 1 [[R,\? [R\?
MPR =g I TN T am a1 TIX
f dRG[p](R) (A1)
a 2112 gg2 R<Rn
4| — +—, 5.2 .
8m 32m° (529 under the condition
whereR,(<R;) is determined by
f dRp=N, (A2)
R,\4 2a R,\2 a2 |32 [ a2 |32 R<Rm
S L DR | |
N 712 \ 16 167 where the integrand dfl;,;+ U,; is expressed aG[p](R).
The variation with respect tp with fixed R, gives
+ 5a° RZ) i 5.2
N (529 5G[ p]
5 M (A3)
The results are plotted in Figs. 3 and 4. We observe that
when the parameter satisfies the condition where the Lagrange’s multiplige is determined by EqA2)
asu= w(Ry,). Substituting the result into EGAL), we mini-
a>1, (529 mize Eq.(A1) further with respect t®,, by taking the varia-
tion as
results of numerical simulations for both the distribution
function and the maximum radius are reproduced by the ex- 5G[p] dp du
pressiong5.25 and(5.26) to a very good accuracy. ZWRmG[p](Rm)+j —_—
R op Jdu dR,,
In the case where m
dp d
a<l, (5.28 =2meG[p](Rm)+,,LJ dRL E 0. (a4
R<R, Jm dRy

the maximum radius becomes comparable with or smaller o ] ]

than the screening length. In other words, the range of théince the variation of EqA2) with respect toRy, gives
potential from a particle in the system becomes compa- 9 d

rable with or larger than the system radius. The local density op G
approximation may not be applicable in this domain and this 27 Rmp (Rm) + fR<RdeaM dRy, 0. (AS)
may be the main reason for the deviation from the results of

numerical experiments. Eq. (A4) is rewritten into
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2R G[p1(Rym) — wp(Ry)} In the case of E¢(5.11) and Eq.(5.12, Eq. (A6) reduces
p?(R,)=0 and we have Eqg5.16—(5.19. In the case of

—27R.| G[p](Ry) — 5G[P]p(R yl=0 Egs. (5.20, (5.21), and (5.12, we have Eqgs(5.25 and
m m Sp m ' (5.26). [Note that, in the latter casp(R) has a discontinuity

atR=R,, and\?p(R,) =\?p(R,,—0)=(a/2m)?>0.]
(A6)
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